This site is from a past semester! The current version will be here when the new semester starts.

Design fundamentals

This is a printer-friendly version. It omits exercises, optional topics (i.e., four-star topics), and other extra content such as learning outcomes.

Abstraction

What

Abstraction is a technique for dealing with complexity. It works by establishing a level of complexity we are interested in, and suppressing the more complex details below that level.

The guiding principle of abstraction is that only details that are relevant to the current perspective or the task at hand need to be considered. As most programs are written to solve complex problems involving large amounts of intricate details, it is impossible to deal with all these details at the same time. That is where abstraction can help.

Data abstraction: abstracting away the lower level data items and thinking in terms of bigger entities

Within a certain software component, you might deal with a user data type, while ignoring the details contained in the user data item such as name, and date of birth. These details have been ‘abstracted away’ as they do not affect the task of that software component.

Control abstraction: abstracting away details of the actual control flow to focus on tasks at a higher level

print(“Hello”) is an abstraction of the actual output mechanism within the computer.

Abstraction can be applied repeatedly to obtain progressively higher levels of abstraction.

An example of different levels of data abstraction: a File is a data item that is at a higher level than an array and an array is at a higher level than a bit.

An example of different levels of control abstraction: execute(Game) is at a higher level than print(Char) which is at a higher level than an Assembly language instruction MOV.

Abstraction is a general concept that is not limited to just data or control abstractions.

Some more general examples of abstraction:

  • An OOP class is an abstraction over related data and behaviors.
  • An architecture is a higher-level abstraction of the design of a software.
  • Models (e.g., UML models) are abstractions of some aspect of reality.